Strongly Dominating Sets of Reals

Michal Dečo¹ Miroslav Repický²

¹Institute of Mathematics P.J. Šafárik University Košice, Slovakia

²Institute of Mathematics Slovak Academy of Sciences Košice, Slovakia

Winterschool 2013, Hejnice

Outline

 ${f 2}$ Strongly dominating sets and the ideal ${\cal D}$

3 Analytic strongly dominating sets

Motivation

Lemma ([1], Goldstern, Repický, Shelah, Spinas)

For a Borel set $B \subseteq {}^{\omega}\omega$ the following conditions are equivalent:

- B is strongly dominating.
- There is a Laver tree p such that $[p] \subseteq B$.

Motivation

Lemma ([1], Goldstern, Repický, Shelah, Spinas)

For a Borel set $B \subseteq {}^{\omega}\omega$ the following conditions are equivalent:

- B is strongly dominating.
- There is a Laver tree p such that $[p] \subseteq B$.

Theorem ([2], Kechris)

For an analytic set $A \subseteq {}^{\omega}\omega$ the following conditions are equivalent:

- A is unbounded in $({}^{\omega}\omega, \leq^*)$.
- There exists a Miller tree q such that $[q] \subseteq A$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Definition

For a set $A \subseteq {}^{\omega}\omega$ the properties D(A) and $D_s(A)$, where $s \in {}^{<\omega}\omega$, are defined as follows:

•
$$D(A) \leftrightarrow (\forall f: {}^{<\omega}\omega \to \omega)(\exists x \in A)(\forall^{\infty}n \in \omega) x(n) \ge f(x \upharpoonright n),$$

Definition

For a set $A \subseteq {}^{\omega}\omega$ the properties D(A) and $D_s(A)$, where $s \in {}^{<\omega}\omega$, are defined as follows:

• $D(A) \leftrightarrow (\forall f: {}^{<\omega}\omega \to \omega)(\exists x \in A)(\forall^{\infty}n \in \omega) x(n) \ge f(x \upharpoonright n),$

• $D_s(A) \leftrightarrow (\forall f : {}^{<\omega}\omega \to \omega)(\exists x \in A \cap [s])(\forall n \ge |s|) x(n) \ge f(x \upharpoonright n).$

Definition

For a set $A \subseteq {}^{\omega}\omega$ the properties D(A) and $D_s(A)$, where $s \in {}^{<\omega}\omega$, are defined as follows:

- $\bullet \ D(A) \leftrightarrow (\forall f:{}^{<\omega}\omega \rightarrow \omega)(\exists x \in A)(\forall^{\infty}n \in \omega)\, x(n) \geq f(x \restriction n),$
- $D_s(A) \leftrightarrow (\forall f : {}^{<\omega}\omega \to \omega)(\exists x \in A \cap [s])(\forall n \ge |s|) x(n) \ge f(x \upharpoonright n).$

If D(A) holds for a set A, we say that the set A is strongly dominating.

Definition

For a set $A \subseteq {}^{\omega}\omega$ the properties D(A) and $D_s(A)$, where $s \in {}^{<\omega}\omega$, are defined as follows:

- $\bullet \ D(A) \leftrightarrow (\forall f:{}^{<\omega}\omega \rightarrow \omega)(\exists x \in A)(\forall^{\infty}n \in \omega)\, x(n) \geq f(x \restriction n),$
- $D_s(A) \leftrightarrow (\forall f : {}^{<\omega}\omega \to \omega)(\exists x \in A \cap [s])(\forall n \ge |s|) x(n) \ge f(x \upharpoonright n).$

If D(A) holds for a set A, we say that the set A is strongly dominating.

Example

$$A_s = \{x \in [s] : (\forall n \ge |s|) x(n) \equiv 0 \mod 2\}, \text{ where } s \in {}^{<\omega}\omega.$$

A tree $q \subseteq {}^{<\omega}\omega$ is said to be a *Laver tree*, if there is $s \in q$ (a *stem* of q) such that for every $t \in q$

1 either $t \subseteq s$ or $t \supseteq s$,

3

A tree $q \subseteq {}^{<\omega}\omega$ is said to be a *Laver tree*, if there is $s \in q$ (a *stem* of q) such that for every $t \in q$

1 either $t \subseteq s$ or $t \supseteq s$,

2 if $t \supseteq s$ the set $\{n \in \omega : s \cap \langle n \rangle \in q\}$ is infinite. (t is a splitting node)

A tree $q \subseteq {}^{<\omega}\omega$ is said to be a *Laver tree*, if there is $s \in q$ (a *stem* of q) such that for every $t \in q$

1 either $t \subseteq s$ or $t \supseteq s$,

2 if $t \supseteq s$ the set $\{n \in \omega : s \cap \langle n \rangle \in q\}$ is infinite. (t is a splitting node)

Remark

Every strongly dominating subset of the Baire space is dominating.

A tree $q \subseteq {}^{<\omega}\omega$ is said to be a *Laver tree*, if there is $s \in q$ (a *stem* of q) such that for every $t \in q$

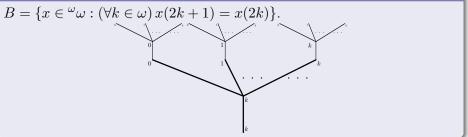
1 either $t \subseteq s$ or $t \supseteq s$,

2 if $t \supseteq s$ the set $\{n \in \omega : s \cap \langle n \rangle \in q\}$ is infinite. (t is a splitting node)

Remark

Every strongly dominating subset of the Baire space is dominating.

Example



Let us denote

$$\mathcal{D} = \{ A \subseteq {}^{\omega} \omega : A \text{ is not strongly dominating} \}.$$

- 2

<ロ> <同> <同> < 同> < 同>

Let us denote

 $\mathcal{D} = \{ A \subseteq {}^{\omega}\omega : A \text{ is not strongly dominating} \}.$

Theorem

The set \mathcal{D} is σ -ideal on ${}^{\omega}\omega$ with base consisting of G_{δ} sets and cardinal characteristics as follows:

$$\operatorname{add}(\mathcal{D}) = \operatorname{cov}(\mathcal{D}) = \mathfrak{b}, \quad \operatorname{non}(\mathcal{D}) = \operatorname{cof}(\mathcal{D}) = \mathfrak{d}.$$

Moreover, ideal \mathcal{D} is orthogonal to ideal \mathcal{M} of meager sets and also to ideal \mathcal{N}_{μ} of sets of measure zero, for every finite atomless Borel measure μ on ${}^{\omega}\omega$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Let $A \subseteq {}^{\omega}\omega$ and $s \in {}^{<\omega}\omega \setminus \{\emptyset\}$ be arbitrary. Then

• $D(A) \leftrightarrow (\forall y \in {}^{\omega}\omega)(\exists x \in A)(\forall^{\infty}n \in \omega) x(n+1) \ge y(x(n)).$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Let $A \subseteq {}^\omega \omega$ and $s \in {}^{<\omega} \omega \setminus \{ \emptyset \}$ be arbitrary. Then

- $D(A) \leftrightarrow (\forall y \in {}^{\omega}\omega)(\exists x \in A)(\forall^{\infty}n \in \omega) x(n+1) \ge y(x(n)).$
- $D_s(A) \leftrightarrow (\forall y \in {}^{\omega}\omega)(\exists x \in A \cap [s])(\forall n \ge |s| 1) x(n+1) \ge y(x(n)).$

Let $A \subseteq {}^{\omega}\omega$ and $s \in {}^{<\omega}\omega \setminus \{\emptyset\}$ be arbitrary. Then

- $D(A) \leftrightarrow (\forall y \in {}^{\omega}\omega)(\exists x \in A)(\forall^{\infty}n \in \omega) x(n+1) \ge y(x(n)).$
- $D_s(A) \leftrightarrow (\forall y \in {}^{\omega}\omega)(\exists x \in A \cap [s])(\forall n \ge |s| 1) x(n+1) \ge y(x(n)).$

Lemma

Assume that $A \subseteq {}^{\omega}\omega$. Then **1** $D(A) \leftrightarrow (\exists s \in {}^{<\omega}\omega) D_s(A),$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Let $A \subseteq {}^{\omega}\omega$ and $s \in {}^{<\omega}\omega \setminus \{\emptyset\}$ be arbitrary. Then

• $D(A) \leftrightarrow (\forall y \in {}^{\omega}\omega)(\exists x \in A)(\forall {}^{\infty}n \in \omega) x(n+1) \ge y(x(n)).$

• $D_s(A) \leftrightarrow (\forall y \in {}^\omega \omega) (\exists x \in A \cap [s]) (\forall n \ge |s| - 1) x(n+1) \ge y(x(n)).$

Lemma

Assume that $A \subseteq {}^{\omega}\omega$. Then **1** $D(A) \leftrightarrow (\exists s \in {}^{<\omega}\omega) D_s(A)$, **2** $D_s(A) \leftrightarrow (\exists^{\infty}n \in \omega) D_s \frown \langle n \rangle(A)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Let $A \subseteq {}^{\omega}\omega$ and $s \in {}^{<\omega}\omega \setminus \{\emptyset\}$ be arbitrary. Then

• $D(A) \leftrightarrow (\forall y \in {}^{\omega}\omega)(\exists x \in A)(\forall^{\infty}n \in \omega) x(n+1) \ge y(x(n)).$

• $D_s(A) \leftrightarrow (\forall y \in {}^\omega \omega) (\exists x \in A \cap [s]) (\forall n \ge |s| - 1) x(n+1) \ge y(x(n)).$

Lemma

Assume that $A \subseteq {}^{\omega}\omega$. Then **1** $D(A) \leftrightarrow (\exists s \in {}^{<\omega}\omega) D_s(A)$, **2** $D_s(A) \leftrightarrow (\exists^{\infty}n \in \omega) D_{s^\frown \langle n \rangle}(A)$.

Corollary

If $D_s(A)$ holds, then there is a Laver tree $p \subseteq {}^{<\omega}\omega$ with stem s such that for every $x \in [p]$ we have $(\forall n \ge |s|) D_{x \upharpoonright n}(A)$.

イロト イポト イヨト ・ヨ

Analytic strongly dominating sets

Lemma

Let $A \subseteq {}^{\omega}\omega$ and denote $\Phi(A) = \{x \in {}^{\omega}\omega : (\forall {}^{\infty}k \in \omega) D_{x \upharpoonright k}(A)\}.$ Then $A \setminus \Phi(A) \in \mathcal{D}$.

同下 イヨト イヨト 三日

Analytic strongly dominating sets

Lemma

Let $A \subseteq {}^{\omega}\omega$ and denote $\Phi(A) = \{x \in {}^{\omega}\omega : (\forall {}^{\infty}k \in \omega) D_{x \upharpoonright k}(A)\}.$ Then $A \setminus \Phi(A) \in \mathcal{D}$.

Definition

For a family $\mathcal{A} \subseteq \mathcal{P}(^{\omega}\omega)$ by induction on $\alpha < \omega_1$ we define

$$\begin{split} S_{\mathcal{A},0} &= \{ s \in {}^{<\omega}\omega : (\exists A \in \mathcal{A}) \, D_s(A) \}, \\ S_{\mathcal{A},\alpha} &= \left\{ s \in {}^{<\omega}\omega : (\exists^{\infty}k \in \omega) \, s^\frown \langle k \rangle \in \bigcup_{\beta < \alpha} S_{\mathcal{A},\beta} \right\}, \\ \rho_{\mathcal{A}}(s) &= \min \left\{ \alpha \le \omega_1 : s \in S_{\mathcal{A},\alpha} \text{ or } \alpha = \omega_1 \right\}, \text{ for } s \in {}^{<\omega}\omega. \end{split}$$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q (や

Analytic strongly dominating sets

Lemma

Let $A \subseteq {}^{\omega}\omega$ and denote $\Phi(A) = \{x \in {}^{\omega}\omega : (\forall {}^{\infty}k \in \omega) D_{x \upharpoonright k}(A)\}.$ Then $A \setminus \Phi(A) \in \mathcal{D}$.

Definition

For a family $\mathcal{A} \subseteq \mathcal{P}(^{\omega}\omega)$ by induction on $\alpha < \omega_1$ we define

$$\begin{split} S_{\mathcal{A},0} &= \{ s \in {}^{<\omega}\omega : (\exists A \in \mathcal{A}) \, D_s(A) \}, \\ S_{\mathcal{A},\alpha} &= \left\{ s \in {}^{<\omega}\omega : (\exists^{\infty}k \in \omega) \, s^{\frown}\langle k \rangle \in \bigcup_{\beta < \alpha} S_{\mathcal{A},\beta} \right\}, \\ \rho_{\mathcal{A}}(s) &= \min \left\{ \alpha \le \omega_1 : s \in S_{\mathcal{A},\alpha} \text{ or } \alpha = \omega_1 \right\}, \text{ for } s \in {}^{<\omega}\omega. \end{split}$$

Remark $\rho_{\mathcal{A}}(s) < \omega_1 \leftrightarrow (\exists^{\infty} k \in \omega) \ \rho_{\mathcal{A}}(s^{\sim}\langle k \rangle) < \rho_{\mathcal{A}}(s) \text{ for every } s \in {}^{<\omega}\omega.$ Nichal Dečo, Miroslav Repický (Košice) Strongly Dominating Sets of Reals

If $\mathcal{A} \subseteq \mathcal{P}(^{\omega}\omega)$ and $|\mathcal{A}| < \mathfrak{b}$, then $D_s(\bigcup \mathcal{A})$ holds if and only if $\rho_{\mathcal{A}}(s) < \omega_1$.

3

If $\mathcal{A} \subseteq \mathcal{P}(^{\omega}\omega)$ and $|\mathcal{A}| < \mathfrak{b}$, then $D_s(\bigcup \mathcal{A})$ holds if and only if $\rho_{\mathcal{A}}(s) < \omega_1$.

Sketch of the proof

Michal Dečo, Miroslav Repický (Košice) Strongly Dominating Sets of Reals

If $\mathcal{A} \subseteq \mathcal{P}(^{\omega}\omega)$ and $|\mathcal{A}| < \mathfrak{b}$, then $D_s(\bigcup \mathcal{A})$ holds if and only if $\rho_{\mathcal{A}}(s) < \omega_1$.

Sketch of the proof

• Assume $D_s(\bigcup A)$ and $\rho_A(s) = \omega_1$.

If $\mathcal{A} \subseteq \mathcal{P}(^{\omega}\omega)$ and $|\mathcal{A}| < \mathfrak{b}$, then $D_s(\bigcup \mathcal{A})$ holds if and only if $\rho_{\mathcal{A}}(s) < \omega_1$.

Sketch of the proof

1 Assume
$$D_s(\bigcup \mathcal{A})$$
 and $ho_{\mathcal{A}}(s) = \omega_1$.

2 Define $f: {}^{<\omega}\omega \to \omega$ as follows:

$$f(t) = \begin{cases} \min\{m \in \omega : (\forall k \ge m) \, \rho_{\mathcal{A}}(t \land \langle k \rangle) = \omega_1\}, & \text{if } \rho_{\mathcal{A}}(t) = \omega_1, \\ 0, & \text{otherwise.} \end{cases}$$

If $\mathcal{A} \subseteq \mathcal{P}(^{\omega}\omega)$ and $|\mathcal{A}| < \mathfrak{b}$, then $D_s(\bigcup \mathcal{A})$ holds if and only if $\rho_{\mathcal{A}}(s) < \omega_1$.

Sketch of the proof

1 Assume
$$D_s(\bigcup \mathcal{A})$$
 and $ho_{\mathcal{A}}(s) = \omega_1$.

 $\ \ \textbf{Of the fine } f: {}^{<\omega}\omega \to \omega \text{ as follows:}$

$$f(t) = \begin{cases} \min\{m \in \omega : (\forall k \ge m) \, \rho_{\mathcal{A}}(t \land \langle k \rangle) = \omega_1\}, & \text{if } \rho_{\mathcal{A}}(t) = \omega_1, \\ 0, & \text{otherwise.} \end{cases}$$

$$\begin{array}{l} \bullet \quad D_s(\bigcup \mathcal{A} \cap \bigcup_{A \in \mathcal{A}} \Phi(A)) \text{ holds, since} \\ \\ \bigcup \mathcal{A} \setminus \bigcup_{A \in \mathcal{A}} \Phi(A) \subseteq \bigcup_{A \in \mathcal{A}} (A \setminus \Phi(A)) \in \mathcal{D}. \end{array} \end{array}$$

If $\mathcal{A} \subseteq \mathcal{P}(^{\omega}\omega)$ and $|\mathcal{A}| < \mathfrak{b}$, then $D_s(\bigcup \mathcal{A})$ holds if and only if $\rho_{\mathcal{A}}(s) < \omega_1$.

Sketch of the proof

1 Assume
$$D_s(\bigcup \mathcal{A})$$
 and $ho_\mathcal{A}(s) = \omega_1$.

2 Define $f:{}^{<\omega}\omega\to\omega$ as follows:

$$f(t) = \begin{cases} \min\{m \in \omega : (\forall k \ge m) \, \rho_{\mathcal{A}}(t \land \langle k \rangle) = \omega_1\}, & \text{if } \rho_{\mathcal{A}}(t) = \omega_1, \\ 0, & \text{otherwise.} \end{cases}$$

 $3 \ D_s(\bigcup \mathcal{A} \cap \bigcup_{A \in \mathcal{A}} \Phi(A)) \text{ holds, since}$

$$\bigcup \mathcal{A} \setminus \bigcup_{A \in \mathcal{A}} \Phi(A) \subseteq \bigcup_{A \in \mathcal{A}} (A \setminus \Phi(A)) \in \mathcal{D}.$$

 $\textbf{ Sind } x \in \bigcup \mathcal{A} \cap \bigcup_{A \in \mathcal{A}} \Phi(A) \cap [s] \text{ such that } (\forall n \ge |s|) \, x(n) \ge f(x \upharpoonright n).$

If $\mathcal{A} \subseteq \mathcal{P}(^{\omega}\omega)$, $|\mathcal{A}| < \mathfrak{b}$ and $D_s(\bigcup \mathcal{A})$, then there is a well-founded tree $q \subset {}^{<\omega}\omega$ with stem s such that

• every non-maximal $t \in q$ with $t \supseteq s$ is a splitting node,

- 3

伺下 イヨト イヨト

If $\mathcal{A} \subseteq \mathcal{P}(^{\omega}\omega)$, $|\mathcal{A}| < \mathfrak{b}$ and $D_s(\bigcup \mathcal{A})$, then there is a well-founded tree $q \subset {}^{<\omega}\omega$ with stem s such that

• every non-maximal $t \in q$ with $t \supseteq s$ is a splitting node,

2 for every maximal $t \in q$ there is an $A \in \mathcal{A}$ such that $D_t(A)$ holds.

We call this tree an A-tree.

If $\mathcal{A} \subseteq \mathcal{P}(^{\omega}\omega)$, $|\mathcal{A}| < \mathfrak{b}$ and $D_s(\bigcup \mathcal{A})$, then there is a well-founded tree $q \subset {}^{<\omega}\omega$ with stem s such that

• every non-maximal $t \in q$ with $t \supseteq s$ is a splitting node,

2 for every maximal $t \in q$ there is an $A \in \mathcal{A}$ such that $D_t(A)$ holds.

We call this tree an A-tree.

Definition

Let κ be an infinite cardinal. A subset of a Polish space X is κ -Suslin, if it is a continuous image of ${}^{\omega}\kappa$ (see [3]).

If $\mathcal{A} \subseteq \mathcal{P}(^{\omega}\omega)$, $|\mathcal{A}| < \mathfrak{b}$ and $D_s(\bigcup \mathcal{A})$, then there is a well-founded tree $q \subset {}^{<\omega}\omega$ with stem s such that

• every non-maximal $t \in q$ with $t \supseteq s$ is a splitting node,

2 for every maximal $t \in q$ there is an $A \in \mathcal{A}$ such that $D_t(A)$ holds.

We call this tree an A-tree.

Definition

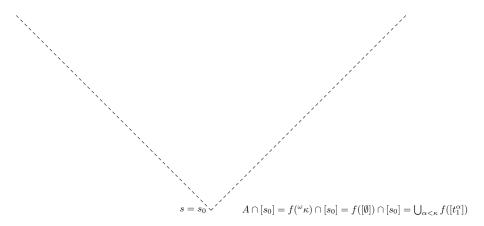
Let κ be an infinite cardinal. A subset of a Polish space X is κ -Suslin, if it is a continuous image of ${}^{\omega}\kappa$ (see [3]).

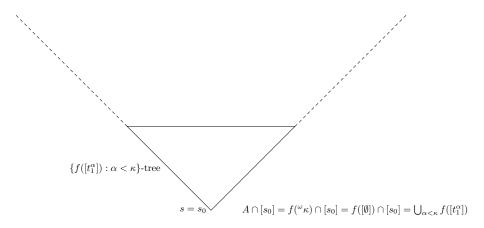
Theorem

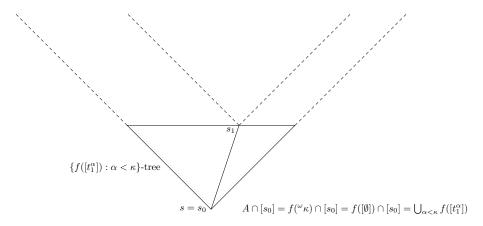
Let $s \in {}^{<\omega}\omega$ be arbitrary. If a set $A \subseteq {}^{\omega}\omega$ is κ -Suslin for some $\kappa < \mathfrak{b}$, then the following conditions are equivalent:

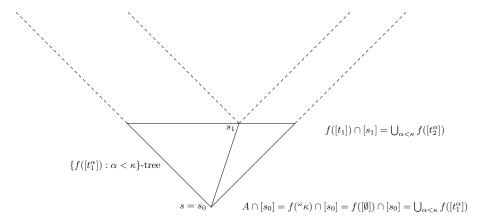
• $D_s(A)$ holds.

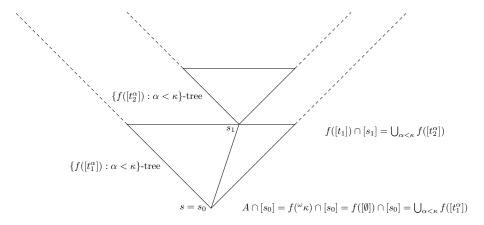
2 There is a Laver tree $p \subseteq {}^{<\omega}\omega$ with stem s such that $[p] \subseteq A$.

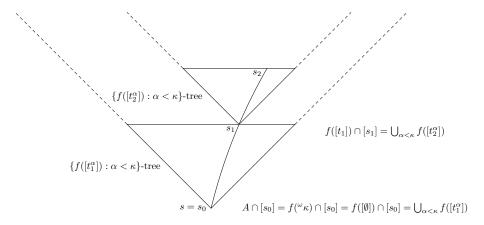


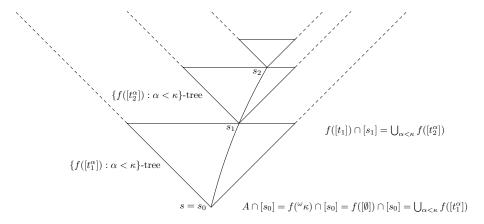


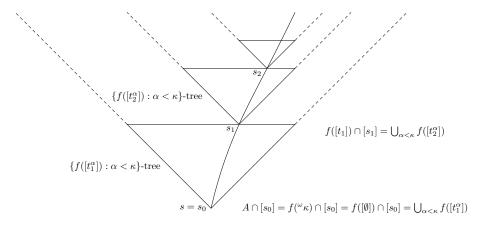












Thank you for your attention.

Comparison of ideals ${\cal D}$ and l^0

Definition

Denote (see [1])

$$l^0 = \{ X \subset {}^{\omega}\omega : (\forall q \in \mathbb{L}) (\exists r \in \mathbb{L}) r \subseteq q \text{ and } [r] \cap X = \emptyset \}.$$

-

Comparison of ideals \mathcal{D} and l^0

Definition

Denote (see [1])

$$l^0 = \{ X \subset {}^{\omega}\omega : (\forall q \in \mathbb{L}) (\exists r \in \mathbb{L}) \, r \subseteq q \text{ and } [r] \cap X = \emptyset \}.$$

Remark

It is easy to see that $\mathcal{D} \subseteq l^0$ and $\mathcal{D} \cap \mathbf{\Sigma}_1^1 = l^0 \cap \mathbf{\Sigma}_1^1$.

3

伺 ト く ヨ ト く ヨ ト

Comparison of ideals \mathcal{D} and l^0

Definition

Denote (see [1])

$$l^0 = \{ X \subset {}^{\omega}\omega : (\forall q \in \mathbb{L}) (\exists r \in \mathbb{L}) \, r \subseteq q \text{ and } [r] \cap X = \emptyset \}.$$

Remark

It is easy to see that
$$\mathcal{D} \subseteq l^0$$
 and $\mathcal{D} \cap \mathbf{\Sigma}_1^1 = l^0 \cap \mathbf{\Sigma}_1^1$.

Theorem ([1])

$$\mathfrak{t} \leq \operatorname{add}(l^0) \leq \operatorname{cov}(l^0) \leq \mathfrak{b} \text{ and } \operatorname{non}(l^0) = \mathfrak{c}.$$

伺 ト イヨト イヨト

For a function $g:{}^{<\omega}\omega\to 2$ let p(g) be the Laver tree with stem \emptyset recursively defined as follows:

 $\textcircled{0} \ \emptyset \in p(g),$

・ 同 ト ・ ヨ ト ・ ヨ ト

- B

For a function $g:{}^{<\omega}\omega\to 2$ let p(g) be the Laver tree with stem \emptyset recursively defined as follows:

2 if $t \in p(g)$ and $m \in \omega$, then $t \cap \langle m \rangle \in p(g)$ iff $m \equiv g(t) \mod 2$.

For a function $g:{}^{<\omega}\omega\to 2$ let p(g) be the Laver tree with stem \emptyset recursively defined as follows:

- $\bullet \ \emptyset \in p(g),$
- 2 if $t \in p(g)$ and $m \in \omega$, then $t \cap \langle m \rangle \in p(g)$ iff $m \equiv g(t) \mod 2$.

Lemma

Let G be the set of functions $g: {}^{<\omega}\omega \to 2$ of cardinality less than \mathfrak{c} and let $A = {}^{\omega}\omega \setminus \bigcup_{g \in G}[p(g)]$. Then $D_s(A)$ holds for every $s \in {}^{<\omega}\omega$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 うの()

For a function $g:{}^{<\omega}\omega\to 2$ let p(g) be the Laver tree with stem \emptyset recursively defined as follows:

- $\bullet \ \emptyset \in p(g),$
- 2 if $t \in p(g)$ and $m \in \omega$, then $t \cap \langle m \rangle \in p(g)$ iff $m \equiv g(t) \mod 2$.

Lemma

Let G be the set of functions $g: {}^{<\omega}\omega \to 2$ of cardinality less than \mathfrak{c} and let $A = {}^{\omega}\omega \setminus \bigcup_{g \in G}[p(g)]$. Then $D_s(A)$ holds for every $s \in {}^{<\omega}\omega$.

Theorem

 $\mathcal{D} \neq l^0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Thank you for your attention, again.

References

- M. Goldstern, M. Repický, S. Shelah, and O. Spinas, *On tree ideals*, Proc. Amer. Math. Soc. **123** (1995), no. 5, 1573–1581.
- A. S. Kechris, *On notion of smallness for subsets of the Baire space*, Trans. Amer. Math. Soc. **229** (1977), 191–207.
- Y. N. Moschovakis, *Descriptive set theory*, 2nd ed., Mathematical surveys and monographs **155**, AMS, Providence, RI, 2009.
 - M. Dečo, M. Repický, Strongly dominating sets of reals, http://kosice.upjs.sk/~repicky/